School of ACCOUNTING FINANCE 會計及金融學院

PolyU_CBS-AF at FinSBD:

Sentence Boundary Detection of Financial Data with Domain Knowledge Enhancement and Bilingual Training

Mingyu Wan¹ Rong Xiang² Emmanuele Chersoni¹ Natalia Klyueva¹ Kathleen Ahrens³ Bin Miao⁴ David Broadstock⁴ Jian Kang⁴ Amos Yung³ Chu-Ren Huang¹ ¹Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University

²Department of Computing, The Hong Kong Polytechnic University ³Department of English, The Hong Kong Polytechnic University ⁴School of Accounting and Finance, The Hong Kong Polytechnic University

12 August 2019

6:

8:

11:

12: end for

15: return keyword_dict

RG Research Centre for **RCE** Professional Communication in English

Task Overview

Domain Knowledge Enhancement

• Purpose:	
------------	--

to detect sentence boundaries (the begins and ends) from noisy texts of financial prospectuses.

Challenges:

documents encoded in non-text formats, such as tables, images, etc. conventional punctuation does not necessarily mark sentence boundary.

Algorithm 1 Keyword Extraction	Algorithm 2 Rule-based validation
nput: dataset	Input: dataset, raw_pred, keyword_dict
Output: keyword_dict	Output: updated_prediction
1: for i in len(dataset) do	1: for keyword in keyword_dict.key do
2: $curword = dataset[i].$	2: for i in len(dataset)-len(keyword) do
3: $nxtword = dataset[i+1].$	3: if word sequence match keyword then

Our Approach:

Machine Learning: a supervised task of three-class predictions + Feature Engineering: domain-specific and document-specific observation + Rule-based Validation: also know as domain knowledge enhancement.

Performance:

- English: 0.835 (avg. F-score of BS and ES)
- French: 0.86 (avg. F-score of BS and ES)

Feature Engineering

A fused feature set of 24 dimensions, including:

• Two sets of punctuation:

- PUNC SET1 = [`.']
- 'e', '\$', '£', "'', '©', '®']
- **Initially capitalized words**, *e.g.* ". Enter END The BEGIN sales";
- Acronyms, *e.g.*"UBS_BEGIN" "co" or "kiid";
- **Digital numbers**, ambiguity resolution as in "10.3";
- Letters or Roman numbers, e.g. e.g. A-Z, a-z or I, II, ..., XII;
- **POS tags**, structural cues.

- if "END" in curword then update raw_pred with NO_BOUNDARY if "BEGIN" in nxtword then end if $\operatorname{continue}$ end for else7: end for add keyword to keyword_dict. 8: return raw_pred update frequency in keyword_dict. end if end if
 - The two steps can correct false positive predictions caused by non-text sections, such as the titles, dates, tables, figures, etc., which fail to fall into the traditional category of sentence boundary.

Results and Comparison

13: refine keyword_dict with *length threshold*.

14: refine keyword_dict with *frequency threshold*.

- RFC outperforms NN in ³/₄ tasks
- NN outperforms RFC in the English Test set
- Bilingual training consistently outperforms monolingual training with 1-2 % F gain.

Classifiers

2. Neural Network

epoch = 5density = 300 density = 100

$Features \setminus F1$	BS^a	ES^{b}	Mean	$\delta(\%)^{\mathbf{c}}$
Punc1	0.70	0.82	0.76	baseline
+Punc2	0.71	0.83	0.77	$1 \uparrow$
+Cap	0.72	0.86	0.79	$2\uparrow$
+Acro	0.73	0.87	0.80	$1 \uparrow$
$+\mathrm{Dig}$	0.73	0.89	0.81	$1 \uparrow$
+Lett	0.74	0.90	0.82	$1\uparrow$
+POS	0.78	0.92	0.85	$3\uparrow$
+ Enter/All	0.80	0.92	0.86	$1\uparrow$

^a Beginning boundaries

^b Ending boundaries

^c F1 improvement in percentage

Table 1: Performance of feature mining in the English Dev set with RFC

• **POS** vector is the most useful feature.

Adaptation to Test Set

Test Set	F1-Mean	Rank
Dev_en_rfc1	0.875	
Test_en_rfc1	0.78^{*}	16^{\diamond}
$Test_en_rfc1_adapted$	0.835^{\star}	10^*
Dev_fr_rfc1	0.85	
Test_fr_rfc1	0.86^{*}	8\$
Test_fr_rfc1_adapted	0.86^{\star}	8*

375 78^* 16^\diamond 335^* 10^* 35^* 10^* 85 86^* 8^\diamond 86^* 8^\diamond 86^* 8^* 86^* 8^* French dataset with			
78^* 16^\diamond • Our approach 335^* 10^* • Our significantly be 85 • Our system is rol 86^* 8^\diamond • Our system is rol 86^* 8^* • French dataset with	375		
335^{\star} 10^{*} significantlybe adaptation to the Er 85 adaptation to the Er 86^{*} 8^{\diamond} • Our system is rol 86^{\star} 8^{*} French dataset wit	78*	16^{\diamond}	• Our approach
85 $-$ adaptation to the Er 85 $ 0$ ur system is rol 86^* 8^* French dataset wit	335^{\star}	10^*	significantly be
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	or		adaptation to the Er
86^* 8^\diamond • Our system is rol 86^* 8^* French dataset wit	80		
86* 8* French dataset wit	86^{*}	8^{\diamond}	• Our system is rol
	86*	8*	French dataset wit

* Result without adaptation to the test set ^{*} Rank without adaptation to the test set * Result with adaptation to the test set

works with etter nglish test set.

bust for the th or without adaptation to the test set.

• Knowledge enhancement is **significantly** helpful.

Table 2: Performance of RFC in the French Dev and Test

	F1	$\rm NO^a$	$\rm YES^b$	$\delta(\%)$
Dev	BS	0.83	0.83	0
	\mathbf{ES}	0.86	0.87	$1\uparrow$
	Mean	0.845	0.85	$0.5\uparrow$
Test	BS	0.81	0.84	$3\uparrow$
	\mathbf{ES}	0.88	0.88	0
	Mean	0.845	0.86	$1.5 \uparrow$

^a Without keyword validation

^b With keyword validation

sets in terms of keyword validation

* Rank with adaptation to the test set

Table 3: Performance of RFC w.r.t. knowledge adaptation

Conclusions

- NN does not show advantage over statistical classifiers, but it outperforms RFC in terms of unknown features;
- Syntactic information may be helpful for sentence detection;
- Our system is highly effective with minimal training data;
- Future studies will further verify the effectiveness of this feature design and knowledge enrichment.

Contact Person: WAN, Mingyu Clara, Email: mingyu.wan@polyu.edu.hk. Website: https://www.researchgate.net/profile/Mingyu_Wan/.

Acknowledgements: This work is partially supported by the GRF grant (No. 15608618) and the PDF project (No. 4-ZZKE) at PolyU HK.