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Task Overview

Purpose:
to detect sentence boundaries (the begins and ends) from noisy texts of
financial prospectuses.

Challenges:

documents encoded in non-text formats, such as tables, images, etc.
conventional punctuation does not necessarily mark sentence boundary.

Our Approach:
Machine Learning: a supervised task of three-class predictions + Feature
Engineering: domain-specific and document-specific observation +
Rule-based Validation: also know as domain knowledge enhancement.

Performance:

English: 0.835 (avg. F-score of BS and ES)
French: 0.86 (avg. F-score of BS and ES)

Feature Engineering

A fused feature set of 24 dimensions, including:

Two sets of punctuation:
PUNC_SET1 =[]
PUNC_SET2 =[?, I, 7, %", ", '/, ", \, ), (L%, ‘T, <, >0, S, <L e,
‘e, 9, L, O, ‘@]

Initially capitalized words, e.g. “. Enter END The BEGIN

sales’;

Acronyms, e.9.“UBS_BEGIN” “co” or “kiid”;

Digital numbers, ambiguity resolution as in “10.3”;

Letters or Roman numbers, e.g. e.g. A-Z, a-z or |, Il, ..., XlI,

POS tags, structural cues.

Classifiers

1. Random Forest Classifier
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2. Neural Network

epoch=35 density = 300
density = 100
Feature 1 - categorical crossentropy
» BS
Feature 2
» ES
» None
softmax activation
Featuren . relu activation
batch_size= 32 Input Hidden Output
layer layer layer
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Domain Knowledge Enhancement

Algorithm 1 Keyword Extraction

Algorithm 2 Rule-based validation

Input: dataset
Output: keyword_dict

I: for iin len(dataset) do
curword = dataset][i].

10):
11:
12:
13:
| 4:
15:

nxtword = dataset[i+1].

if “END" in curword then
if “BEGIN™ in nxtword then

continue

else
end if

end if

end for

refine keyword_dict with length threshold.
refine keyword_dict with frequency threshold.

add keyword to kevword_dict.
update frequency in keyword_dict.

return keyword_dict

Input: dataset, raw_pred, keyword_dict
Output: updated_prediction

l: for keyword in keyword_dict.key do

2:  for i in len(dataset)-len(keyword) do

3 if word sequence match keyword then

1 update raw_pred with NO_BOUNDARY
5: end if

6:  end for

7: end for

o

. return raw_pred

e The two steps can correct false positive predictions
caused by non-text sections, such as the titles,
dates, tables, figures, etc., which fail to fall into the
traditional category of sentence boundary.

Results and Comparison
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Table 2: Performance of RFC in the French Dev and Test

sets in terms of keyword validation

Table 1: Performance of feature mining in the English Dev
set with RFC

POS vectoris the most useful feature. E

Knowledge enhancementis significantly helpful.

Adaptation to Test Set

Test Set
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F1-Mean Rank

0.875
(.78* 16° e Our approach works
0.835* 10* significantly better with
0 7 adaptationto the English test set.

LOe)
0.86 8° e Our system is robust for the
0.86™ 8= French dataset with or without

* Result without adaptation to the test set

adaptation to the test set.

¢ Rank without adaptation to the test set
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* Rank with adaptation to the test set

Table 3: Performance of RFC w.r.t. knowledge adaptation

Conclusions

NN does not show advantage over statistical classifiers, but it
outperforms RFC in terms of unknown features;

Syntactic information may be helpful for sentence detection;
Our system is highly effective with minimal training data;

Future studies will further verify the effectiveness of this feature
design and knowledge enrichment.
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